Preprints

  1. Venditti, D., Ruzzetti, E. S., Xompero, G. A., Giannone, C., Favalli, A., Romagnoli, R., & Zanzotto, F. M. (2024). Enhancing Data Privacy in Large Language Models through Private Association Editing. In arXiv preprint arXiv:2406.18221.

Conference Proceedings

  1. Zanzotto, F. M., Ruzzetti, E. S., Xompero, G. A., Ranaldi, L., Venditti, D., Ranaldi, F., Giannone, C., Favalli, A., & Romagnoli, R. (2025). Position Paper: MeMo: Towards Language Models with Associative Memory Mechanisms. In W. Che, J. Nabende, E. Shutova, & M. T. Pilehvar (Eds.), Findings of the Association for Computational Linguistics: ACL 2025 (pp. 15169–15180). Association for Computational Linguistics; . https://aclanthology.org/2025.findings-acl.785/
  2. Ruzzetti, E. S., Xompero, G. A., Venditti, D., & Zanzotto, F. M. (2025). Private Memorization Editing: Turning Memorization into a Defense to Strengthen Data Privacy in Large Language Models. In W. Che, J. Nabende, E. Shutova, & M. T. Pilehvar (Eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 16572–16592). Association for Computational Linguistics; . https://aclanthology.org/2025.acl-long.810/
  3. Ranaldi, L., Ruzzetti, E. S., Venditti, D., Onorati, D., & Zanzotto, F. M. (2024). A Trip Towards Fairness: Bias and De-Biasing in Large Language Models. In D. Bollegala & V. Shwartz (Eds.), Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024) (pp. 372–384). Association for Computational Linguistics; . https://aclanthology.org/2024.starsem-1.30/
  4. Ranaldi, L., Pucci, G., Ranaldi, F., Ruzzetti, E. S., & Zanzotto, F. M. (2024). A Tree-of-Thoughts to Broaden Multi-step Reasoning across Languages. In K. Duh, H. Gomez, & S. Bethard (Eds.), Findings of the Association for Computational Linguistics: NAACL 2024 (pp. 1229–1241). Association for Computational Linguistics; . https://aclanthology.org/2024.findings-naacl.78/
  5. Ranaldi, F., Ruzzetti, E. S., Onorati, D., Ranaldi, L., Giannone, C., Favalli, A., Romagnoli, R., & Zanzotto, F. M. (2024). Investigating the Impact of Data Contamination of Large Language Models in Text-to-SQL translation. Findings of the Association for Computational Linguistics: ACL 2024, 13909–13920. https://aclanthology.org/2024.findings-acl.827/
  6. Ranaldi, F., Ruzzetti, E. S., Onorati, D., Zanzotto, F. M., & Ranaldi, L. (2024). Termite Italian Text-to-SQL: A CALAMITA Challenge. Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-It 2024), 1176–1183.
  7. Onorati, D., Venditti, D., Ruzzetti, E. S., Ranaldi, F., Ranaldi, L., & Zanzotto, F. M. (2024). Measuring bias in Instruction-Following models with ItaP-AT for the Italian Language. Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-It 2024), 679–706.
  8. Ruzzetti, E. S., Ranaldi, F., Onorati, D., Venditti, D., Ranaldi, L., Caselli, T., & Zanzotto, F. M. (2024). Assessing the Asymmetric Behaviour of Italian Large Language Models across Different Syntactic Structures. CLiC-It 2024: Tenth Italian Conference on Computational Linguistics,
  9. Ranaldi, L., Pucci, G., Ranaldi, F., Ruzzetti, E. S., & Zanzotto, F. M. (2024). The limits of Italian in Reasoning Tasks. Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-It 2024), 781–795.
  10. Ruzzetti, E. S., Ranaldi, F., Logozzo, F., Mastromattei, M., Ranaldi, L., & Zanzotto, F. M. (2023). Exploring Linguistic Properties of Monolingual BERTs with Typological Classification among Languages. In H. Bouamor, J. Pino, & K. Bali (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2023 (pp. 14447–14461). Association for Computational Linguistics; . https://aclanthology.org/2023.findings-emnlp.963/
  11. Onorati, D., Ruzzetti, E. S., Venditti, D., Ranaldi, L., & Zanzotto, F. M. (2023). Measuring bias in Instruction-Following models with P-AT. In H. Bouamor, J. Pino, & K. Bali (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2023 (pp. 8006–8034). Association for Computational Linguistics; . https://aclanthology.org/2023.findings-emnlp.539/
  12. Ranaldi, L., Ruzzetti, E. S., & Zanzotto, F. M. (2023). PreCog: Exploring the Relation between Memorization and Performance in Pre-trained Language Models. In R. Mitkov & G. Angelova (Eds.), Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing (pp. 961–967). INCOMA Ltd., Shoumen, Bulgaria; . https://aclanthology.org/2023.ranlp-1.103/
  13. Ranaldi, L., Nourbakhsh, A., Ruzzetti, E. S., Patrizi, A., Onorati, D., Mastromattei, M., Fallucchi, F., & Zanzotto, F. M. (2023). The Dark Side of the Language: Pre-trained Transformers in the DarkNet. In R. Mitkov & G. Angelova (Eds.), Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing (pp. 949–960). INCOMA Ltd., Shoumen, Bulgaria; . https://aclanthology.org/2023.ranlp-1.102/
  14. Onorati, D., Ranaldi, L., Nourbakhsh, A., Patrizi, A., Ruzzetti, E. S., Mastromattei, M., Fallucchi, F., & Zanzotto, F. M. (2023). The Dark Side of the Language: Syntax-Based Neural Networks Rivaling Transformers in Definitely Unseen Sentences. 2023 IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), 111–118.
  15. Ruzzetti, E. S., Onorati, D., Ranaldi, L., Venditti, D., & Zanzotto, F. M. (2023). Investigating Gender Bias in Large Language Models for the Italian Language. CLiC-It 2023: 9th Italian Conference on Computational Linguistics, 3596.
  16. Ranaldi, F., Ruzzetti, E. S., Ranaldi, L., Venditti, D., Giannone, C., Favalli, A., Romagnoli, R., & Zanzotto, F. M. (2023). Prompting LLMs in Italian language for Text-to-SQL translation. Italian Conference on Computational Linguistics 2023.
  17. Ranaldi, L., Pucci, G., Ruzzetti, E. S., Zanzotto, F. M., & Freitas, A. (2023). Teasing LLMs adapted to Italian. Proceedings of the 9th Italian Conference on Computational Linguistics (CLiC-It 2023), 557–561.
  18. Ruzzetti, E. S., Ranaldi, L., Mastromattei, M., Fallucchi, F., Scarpato, N., & Zanzotto, F. M. (2022). Lacking the Embedding of a Word? Look it up into a Traditional Dictionary. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Findings of the Association for Computational Linguistics: ACL 2022 (pp. 2651–2662). Association for Computational Linguistics; . https://aclanthology.org/2022.findings-acl.208/
  19. Ranaldi, L., Mastromattei, M., Onorati, D., Fallucchi, F., & others. (2022). KERMIT for Sentiment Analysis in Italian Healthcare Reviews. CEUR WORKSHOP PROCEEDINGS, 3033.

Journal articles

  1. Miranda, M., Ruzzetti, E. S., Santilli, A., Zanzotto, F. M., Bratières, S., & Rodolà, E. (2025). Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions. Transactions on Machine Learning Research. https://openreview.net/forum?id=Ss9MTTN7OL
  2. Ruzzetti, E. S., Venditti, D., Zanzotto, F. M., & Fallucchi, F. (2024). Using distributional models for studying the influence of school textbooks in children bias. IEEE Access, 12, 158207–158214.